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Abstract

The equilibrium of a curved interface formed between two fluid phases, which are exposed to an external action is

examined. The external action is shown to result in an energy jump across the interface thereby affecting the phase

equilibrium. If stated in terms of an energy density of the phases, this action appears in both the Laplace and the

Thomson equation as additional term.
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1. Introduction

The knowledge of the equilibrium state of interfaces

is required e.g. for modelling of transport processes

occurring between fluid phases. In many instances, one

of the phases forms a thin film on a solid wall, which

affects the film properties, see e.g. [1–3], the latter citing

a number of more recent publications. As a rule, the wall

effect upon the film is measured in terms of disjoining

pressure, which is embodied into the respective equa-

tions as a positive quantity in some papers, but a nega-

tive one in others; it consists of several components

arising from different origins. Recently, Stephan [4]

discussed the effect of the dispersion component of the

disjoining pressure on the equilibrium of a concave

motionless liquid film that is adhering to a planar wall.

Starting from mass and heat balances, Mitrovic [5]

specified the interfacial conditions of an evaporating

liquid film, showing the curvature of its surface to de-

pend on the fluxes between the phases and the move-

ment of the interface.

Although our interest in the equilibrium of liquid

films bounded to a wall has a long history, the equilib-

rium conditions of such systems reported in the litera-
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ture do not always agree with one another. From this

point of view further discussion of the issue would seem

appropriate. The aim of the present paper is to derive an

expression for the vapour pressure of a curved interface

taking into account some external effects. The model

adopted rests on simplified Gibbs’ [6] analysis of the

equilibrium of heterogeneous fluid systems. The Clau-

sius–Clapeyron equation has been used to illustrate

these effects in terms of temperature. The considerations

are restricted to single component static systems.
2. Conditions of mechanical equilibrium

Gibbs [6] extended the equilibrium conditions, stated

by Dirichlet [7] in terms of energy for a system of rigid

bodies, to fluid systems consisting of several phases. In

the case of a fluid system, the energy of the phases as

well as of the interfaces, formed between and shaped by

the neighbouring phases, must be taken into account.

Involving a variational principle, Gibbs obtained a set of

relationships thus deducing the conditions of thermal,

mechanical, and chemical equilibrium. This method is

simplified and applied in the following to a two-phase

system.

Indicating by the indices L and V the phases in Fig. 1,

denoting by p the pressure and by r the free energy of

the interface, the mechanical energy of the system can

be written as
ed.
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Nomenclature

A constant, interface area

B constant

a, b van der Waals constants

E field strength

F free energy
~ff force per mass unit

Dh enthalpy of phase change

g gravity

M molar mass

n exponent

p pressure

Dp pressure difference

~rr radius vector

R universal gas constant

T temperature

V volume

v specific volume

z height above reference level

d film thickness

j curvature

q density

r surface tension (energy)

l chemical potential

~uu force per mass unit

/ potential, energy density

D/ potential difference

e permittivity

Subscripts

F film

L liquid

I interface

T at constant T
V vapour

/ due to potential /
0 reference value

1 semi-infine phase, reference state

Fig. 1. Two-phase system exposed to an external potential /.

1 A referee insisted on an explanation of the relationship

dA ¼ jdV , particularly on the definition of the curvature

j ¼ dA=dV . The latter relationship is regularly involved in

numerical treatments of capillary phenomena, e.g. Bullard et al.

(Computational Materials Science 4 (1995) 103–116): ‘‘The

mean curvature of an infinitesimal element along a condensed

phase interface represents the quantity dA=dV , where dA is the

incremental change in the elemental area when it is normally

displaced by local addition of material of volume dV .’’
In the celebrated studies of Gibbs [6], one takes from p. 391:

‘‘If all parts of the dividing surface move a uniform normal

distance dN , we shall have dS ¼ ðc1 þ c2ÞS dN , dV 0 ¼ S dN ,

dV 00 ¼ �S dN .’’ Here, S denotes the surface area, dV 0 and dV 00

the variations of the volumes of the phases forming the inter-

face; c1 and c2 are the curvatures.

To transform the definitions in each other, one has to set

j ¼ c1 þ c2, from which, for example, for a spherical surface

one obtains j ¼ 2=R, which also immediately follows from

j ¼ dA=dV . For detailed considerations the reader is parti-

cularly referred to a paper by Taylor et al. (Acta Metallurgica

et Materialia 40 (1992) 1475–1485).
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F ¼
Z
VL

pL dVL þ
Z
VV

pV dVV þ
Z
A
rdA: ð1Þ

In the case that the phases are exposed to the action of

an external potential, their free energies will be changed.

Denoting by / the energy per unit volume arising from

this potential, / ¼ �ðoF/=oV ÞT , instead of (1), we have

F ¼
Z
VL

ðpL þ /LÞdVL þ
Z
VV

ðpV þ /VÞdVV þ
Z
A
rdA:

ð2Þ

Equations of this type have already been used by Gibbs

[6] and Neumann [8], the latter giving a comprehensive

review of earlier works in this field.

A system in equilibrium requires dF ¼ 0. A variation

of F in Eq. (2) would result in a stable configuration of

the phases for d2F > 0. However, for simplicity, the

second condition is considered to be fulfilled and the
sum ðp þ /Þ is taken as invariant within the phases.

Then, with dVL þ dVV ¼ 0 and dA ¼ jdV , one gets

ðpL þ /LÞ � ðpV þ /VÞ þ rj ¼ 0; ð3Þ

or

pV ¼ pL þ rjþ D/; D/ ¼ /L � /V; ð4Þ

where the curvature is positive ðj > 0Þ when its centre

lies on the side of the V-phase. 1 Another derivation
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path of this equation is given in Appendix A, where the

symbol / represents the potential energy per unit mass.

Eq. (4) is a generalised Laplace expression for the

mechanical equilibrium of a capillary system. As it

shows, the jump of the pressure across the interface,

which is the surface of tension according to Gibbs [6], is

rooted in the curvature of the interface and in the po-

tential jump D/ ¼ /L � /V. Viewed in terms of an en-

ergy density, Eq. (3) expresses the difference of the

energies of the phases in dependence of the interface

curvature.

If different actions are imposed on the phases, and if

these actions arise from potentials, summation applies,

D/ ¼ /L � /V ¼
X
k

D/k ; ð5Þ

where D/k denotes the potential difference of kth action.

In what follows, the phases V and L in Fig. 1 are

vapour and liquid of the same substance obeying Eq. (4).

Given the quantities rj and D/, the system has only

one degree of freedom, and to describe its equilibrium

the pressure pL (or pV) must be specified. Setting in Eq.

(4), for instance, pL ¼ pL1, where pL1 is the equilibrium

pressure of a plane interface at no external action (Fig.

2a), we get

pV ¼ pL1 þ rjþ D/: ð6Þ

For rjþ D/ > 0, it is pV > pL1 ¼ pV1. The equilibrium

temperature TV of a system satisfying Eq. (6) is thus

larger than the temperature TV1 corresponding to pL1.

Fig. 2 illustrates such cases with a curved (b) and a plane
Fig. 2. Equilibrium conditions on a plane interface formed by

semi-infinite phases (a), on the surface of a bubble in equilib-

rium with its liquid (b), and on a planar liquid film (c); (d) il-

lustrates the vapour pressure lowering according to Eq. (17);

Dp ¼ rjþ D/, Dq ¼ qL � qV.
(c) interface. The pressure in the vapour pV of these

systems in equilibrium at TV ¼ TL ¼ TV1 is less than pL1
and, to quantify the pressure difference pL1 � pV, Eq. (6)
is necessary, but insufficient.
3. Vapour pressure

3.1. General expression

To obtain the vapour pressure of the systems b and c

in Fig. 2 with the mechanical equilibrium (4) at the

temperature TV1, the equilibrium is slightly distorted

keeping the temperature unchanged, thus

dpV ¼ dpL þ dðrjþ D/Þ: ð7Þ

Depending on the displacement direction, a phase

transition (evaporation for dpV < 0, condensation for

dpV > 0) will occur. In order to prevent this phase

transition, the state of the phases must be changed such

that the system remains in equilibrium at any instant.

Hence, the well-known relationship,

dl ¼ vdp; ð8Þ

where v and l represent the specific volume and the

chemical potential, respectively, applied to both phases,

vVdpV ¼ vL dpL; ð9Þ

and combined with Eq. (7), gives

ðvV � vLÞdpV ¼ �vL dðrjþ D/Þ; ð10Þ

ðvV � vLÞdpL ¼ �vV dðrjþ D/Þ: ð11Þ

To illustrate the effects of rj and/or D/ on the pressures

pV and pL in the phases under equilibrium conditions,

the integration of Eqs. (10) and (11) will be performed

from the initial pressures pV1 and pL1 ¼ pV1 at

rjþ D/ ¼ 0 to the pressures pV and pL at rjþ D/ 6¼ 0.

However, since these equations are not independent

from each other, it suffices to treat only one of them, say,

Eq. (10), hence

Z pV

pV1

vV � vL
vL

dpV ¼ �
Z rjþD/

0

dðrjþ D/Þ: ð12Þ

This integration path describes a transient of the system

due to external action changing, at the same time, the

curvature of the interface. The transient starts from a

plane interface at the pressure pV1 without external ef-

fects (Fig. 2a). Strictly, rjþ D/ ¼ 0 may not necessarily

mean a planar interface, the latter requiring j ¼ 0.

During the transient, different assumptions can be

made concerning the dependence of the specific volumes

on the pressure. Defay et al. [9] have discussed some

possibilities for a system without external action.

Clearly, the most direct way is to take the volumes
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constant, but assuming the vapour to be a van der Waals

fluid, pV ¼ RTV1=ðvV � bÞ � a=v2V, and the liquid as in-

compressible (vL ¼ const, a; b ¼ const), gives

�vLðrjþ D/Þ ¼ �2a
1

vV

�
� 1

vV1

�
þ ab

1

v2V

�
� 1

v2L1

�

þ ðb� vLÞðpV � pV1Þ

�RTV1 ln
pV1 þ ða=v2V1Þ
pV þ ða=v2VÞ

; ð13Þ

where the index 1 indicates the initial state.

A combination of Eq. (13) with the van der Waals

equation would lead to the unknown quantities (vV, pV)
and, therefore, to a vapour pressure lowering. However,

being unhandy for further discussion, Eq. (13) is sim-

plified first by setting a; b ¼ 0,

ðrjþ D/Þ ¼ ðpV � pV1Þ þRTV1
vL

ln
pV1
pV

; ð14Þ

valid for ideal vapour. Omitting the pressure difference

ðpV � pV1Þ, gives

pV ¼ pV1 exp

�
� vLðrjþ D/Þ

RTV1

�

¼ pV1 exp

�
� qV

qL

rjþ D/
pV1

�
; ð15Þ

where qV ¼ pV1M=ðRTV1Þ and qL are the mass densities

of the phases.

Finally, supposing

qV

qL

rjþ D/
pV1

� 1;

Eq. (15) can be written as

pV ¼ pV1 � qV

qL

ðrjþ D/Þ: ð16Þ

On the other hand, expanding in Eq. (14) the logarithm

in a series, and taking only the first term, gives

pV ¼ pV1 � qV

qL � qV

ðrjþ D/Þ ðat TV ¼ TV1Þ; ð17Þ

which also immediately follows by integrating Eq. (12)

at constant volumes. For simplicity, we shall be using

Eq. (17) in the following discussion.

Combining (4) and (17) or integrating (11) gives the

pressure in the liquid phase

pL ¼ pV1 � qL

qL � qV

ðrjþ D/Þ ðat TV ¼ TV1Þ: ð18Þ

Taking D/ to arise from a wall action upon a liquid film,

Eqs. (15) and (17) become identical to the well-known

ones from the literature, see e.g. [3]. For this particular

action, they have been reported, apparently for the first

time, by Derjaguin [10] in 1940. Eq. (17) is illustrated in

Fig. 2d, where Dp stands for rjþ D/ and Dq ¼ qL � qV.
As follows from Eqs. (17) and (18), the pressure

lowering is by qV=qL less in vapour than in liquid.

3.2. Particular cases

Choosing j and D/, for instance, setting j ¼ 0,

D/ ¼ 0 or the sum rjþ D/ ¼ 0, particular systems

follow from Eq. (17). In the case rjþ D/ ¼ 0, which is

basically possible for j < 0, not only the temperature of

the system, but also the vapour pressure remains un-

changed during the transient described above. Vanishing

of the difference D/ due to equality of the potentials

ð/L ¼ /VÞ seems less probable as long as the densities of

the phases considerably differ from each other. Anyway,

for D/ ¼ 0, the Thomson (Kelvin) [11] equation, valid

for a bubble in a homogeneous liquid (Fig. 2b), is ob-

tained,

pV ¼ pV1 � qV

qL � qV

rj ðat TV ¼ TV1Þ: ð19Þ

For a planar interface (j ¼ 0, Fig. 2c), one gets

pV ¼ pV1 � qV

qL � qV

D/ ðat TV ¼ TV1Þ; ð20Þ

pL ¼ pV1 � qL

qL � qV

D/: ð21Þ

Notice the same shape of Eqs. (19) and (20), which be-

come identical for rj ¼ D/, irrespective of the nature of
the actions affecting the phase equilibrium. In both cases

the pressure lowering depends on the ratio qV=ðqL � qVÞ,
which is not always true in the literature.

A remark seems in order concerning the potential

difference D/. Namely, while obtaining Eq. (3) from Eq.

(2), the sum p þ / has been taken as constant through-

out the phase. If this is not the case, this sum may be

understood as a local quantity next to the interface, see

Appendix A.
4. Equilibrium temperature of the interface

The equilibrium temperature TV of a system exposed

to an external action can readily be obtained by em-

ploying the Clausius–Clapeyron equation. Allowing a

change of the vapour pressure pV according to Eq. (17)

from the initial pressure pV at TV1 to the final pressure p
at the corresponding equilibrium temperature TV (anal-

ogous to Fig. 2d), we first define a pressure difference Dp
to be equilibrated by the temperature rise,

Dp ¼ p � pV ¼ ðp � pV1Þ þ ðpV1 � pVÞ: ð22Þ

Involving Eq. (17) gives

Dp ¼ ðp � pV1Þ þ
qV

q � q
ðrjþ D/Þ: ð23Þ
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Then,

dp
dT

� Dp
TV � TV1

¼ DhqLqV

TV1ðqL � qVÞ
; ð24Þ

hence

TV¼ 1

�
þ ðp
�

�pV1Þþ qV

qL�qV

ðrjþD/Þ
�
qL�qV

qLqVDh

�
TV1:

ð25Þ

Choosing the pressure difference p � pV1, one defines a

particular system and, for instance, with p � pV1 ¼ 0,

one gets

TV ¼ 1

�
þ rjþ D/

qLDh

�
TV1: ð26Þ

For p � pV1 ¼ rj, Eq. (25) becomes

TV ¼ 1

�
þ rj

qV

�
þ D/

qL

�
1

Dh

�
TV1: ð27Þ

Finally, for p � pV1 ¼ rjþ D/, we have

TV ¼ 1

�
þ rjþ D/

qVDh

�
TV1: ð28Þ

Eqs. (26) and (27) have been derived earlier [12], taking

D/ to represent a wall action upon a liquid film. The

former one gives the temperature rise required just to

keep the pressure in the vapour phase at p ¼ pV1, that is,

to compensate the vapour pressure lowering due to

rjþ D/; the corresponding interface has been termed

open. Eq. (27) is valid for a closed interface (vapour

bubble), if the pressure in the vapour obeys the classical

Laplace equation (without D/), while the vapour pres-

sure is affected by the potential D/. Finally, Eq. (28),
also valid for a closed interface, consistently accounts

for the effects of rj and D/.
As is evident from Eqs. (26) and (28), the tempera-

ture difference TV � TV1 is by the factor qL=qV larger for

a closed than for an open interface, other parameters

being the same.

Setting in Eq. (27) or (28) D/ ¼ 0, one obtains the

well-known Thomson 2 equation [13],

TV ¼ 1

�
þ rj
qVDh

�
TV1: ð29Þ

If a plane interface ðj ¼ 0Þ is exposed to the potential

D/, Eq. (26) gives
2 J.J. Thomson, the discoverer of the electron. The name of

another Thomson, William, perpetuated in the Kelvin temper-

ature, is much more frequently encountered in area of this

paper.

Alternative derivation and a comprehensive analysis of Eq.

(29) can be found in the monograph by Defay et al. [9].
TV ¼ 1

�
þ D/
qLDh

�
TV1: ð30Þ

The shape of this equation belongs basically to the

family of J.J. Thomson’s equations.
5. Origin of the potential difference

The potential difference D/ can arise from different

sources, for instance from an electric and/or a magnetic

field. If dielectric fluid phases are exposed to an electric

field, the free energy of the phases changes [14], giving

D/ ¼ e� 1

8p
ðeE2

n þ E2
t Þ �

1

8p
oe
oq

� �
T

qLE
2; ð31Þ

where E denotes the field strength (En, Et being the

components orthogonal and tangential to the interface)

and e, the electrical permittivity of the L-phase, relative

to that of free space ðeV ¼ 1Þ. In [14], Eq. (31) is given

as a pressure difference.

Of much greater importance for the present consid-

erations is the action of a wall upon the film, Fig. 2c. In

this case, although in another form, the potential / has

been introduced at the same time as the capillary pres-

sure rj by Pierre Simon de Laplace [15]. He ascribed the

interaction between the wall molecules and the fluid to a

potential that is proportional to the densities of the

bodies involved. Details concerning the interaction law

remained unspecified, however. The difficulties con-

cerning this point are best depicted by Clairaut’s remark

that as many interaction laws as is pleased could be

formulated. In general, the potential action was con-

sidered sensitive only at insensitive (immeasurable) dis-

tance.

When dealing with thin films, the potential difference

D/ is discussed in terms of an experimentally accessible

pressure difference. The latter has been the subject matter

of several studies, see e.g. [1,2,16–21] for more recent

references. According to Derjaguin [10] it may be seen as

an excess pressure in a liquid film above that in the bulk

phase, basically arising from molecular interactions of

the film with its substrate; he termed this pressure dif-

ference disjoining pressure. 3 As illustrated in Appendix

A for attraction between wall and fluid, the excess

pressure is always positive; it increases with decreasing

film thickness.

The different components of this pressure difference

vary not only in magnitude from each other, but also

qualitatively; some of them are even negative [1]. For a

given wall–fluid pair the pressure difference depends in
3 Leger and Joanny [22] define the disjoining pressure as

follows: ‘‘The disjoining pressure is the pressure that one has to

impose on the film to prevent it from thickening.’’
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a complex manner on the temperature. It affects the film

equilibrium when the film interfaces (wall–fluid, fluid–

fluid) come into mutual interactions, that is, when dI and
dW overlap [12], Fig. 2c.

The contribution arising from molecular interactions

(dispersion forces) for nonpolar substances with a solid

wall is apparently much larger than the other ones. In

this case, the potential difference D/, written as a pres-

sure difference Dp/, becomes

Dp/ ¼ A

d3
; ð32Þ

where d is the film thickness, Fig. 2c, and A ¼ A0=ð6pÞ,
A0 being the Hamaker constant. This relationship may

be used for planar films on very smooth substrates; ac-

cording to Churaev [19], the film thickness d should not

exceed 12 nm.

The Hamaker constant is system-specific and depends,

in addition, on the temperature; so, the Hamaker con-

stant is actually not constant. Its magnitude for nonpolar

liquids on quartz at room temperature is A0 � 1:3� 10�20

J, and on metallic substrates A0 � 15� 10�20 J. For de-

tails concerning this quantity, the reader may be referred

to the monographs by Derjaguin et al. [1], and Israe-

lachvili [2], a paper by Churaev [19], and a review by

Israelachvili and Tabor [18], the latter discussing also

the temperature effect on A0.

For films of a thickness between 40 and 80 nm, in-

stead of Eq. (32), the expression

Dp/ ¼ B

d4
; ð33Þ

has been recommended [1,18,19], which, like Eq. (32),

can be derived from the theory of dispersion forces. It

describes well the experiments of Kussakov and Titi-

jewskaja [23] with nonpolar liquids (n-decane, n-octane,
n-heptane, n-hexane) on steel, lead glass, diamond, and

quartz substrates. From these experiments, the value of

B was found to be B � ð1:5–1:7Þ � 10�28 Jm, which is in

agreement with the theory (B � 1:6� 10�28 Jm), see also

[1,16,18]. At approximately d � 20 nm, Eqs. (32) and

(33) deliver the same values for Dp/ on metallic sub-

strates.

In view of Eqs. (32) and (33) an interesting conclu-

sion is obtained concerning the shape of a vapour

bubble situated in the field of a wall action. Namely,

from the thermal equilibrium requirement (TV ¼ const

over the bubble surface, Eq. (28)), it follows

rjþ D/ ¼ rjþ A
dn

¼ const:;
oj
od

� 1

dnþ1
; ð34Þ

and the curvature j decreases with increasing d for

n > 1. Note that A=dn stands for either of Eqs. (32) and
(33).
Summing up the contributions D/k mentioned above

gives

D/ ¼ A
dn

þ e� 1

8p
ðeE2

n þ E2
t Þ �

1

8p
oe
oq

� �
T

qLE
2: ð35Þ

By this equation the equilibrium temperature depends

on the direction of the electric field with respect to the

interface. The wall effect, originally formulated for a

planar film, is approximately valid also for films of a

varying thickness.
6. General discussion

6.1. Vapour pressure

The equations given above for the vapour pressures

can be condensed to one single expression by integrating

dlL ¼ vL dpL ¼ vV dpV; ð36Þ

from lLðpL1; TL1Þ and pV1ðTV1Þ to lLðpL; TL1Þ and

pVðTV1Þ. Hence,

pV ¼ pV1 exp
DlL

RTV1

� �
; ð37Þ

for ideal vapour, where ðDlL ¼ DlVÞ

DlL ¼ lLðpL; TL1Þ � lLðpL1; TL1Þ

� olL

opL

� �
TL1

ðpL � pL1Þ: ð38Þ

At small values of the quantity DlL=ðRTV1Þ, Eq. (37)
becomes

pV ¼ pV1 1

�
þ DlL

RTV1

�
¼ pV1 þ DlL

vV
: ð39Þ

Given the temperature TV1, the difference of the chem-

ical potentials governs alone the vapour pressure. In-

crease in lL ðDlL > 0Þ, whatever the cause, rises the

vapour pressure and condensation is expected to occur.

To prevent this process, the chemical potential lL is to

be lowered at the same rate by a counteraction.

To illustrate the efficacy of Eq. (39), we denote again

the initial pressure by pV1 ¼ pL1, corresponding to the

potential lVðpV1; TL1Þ ¼ lLðpL1; TL1Þ, replace the pres-
sure pV in Eq. (4) by pV1, getting

pL � pV1 ¼ pL � pL1 ¼ �ðrjþ D/Þ: ð40Þ

Combining with Eqs. (38) and (39) results in the above

Eq. (16).

If the pressure in the phases is not homogeneous, but

changes due to action of e.g. gravity, the well-known

Gibbs equation,

DlL þ gz ¼ 0; ð41Þ



Fig. 3. Wetting of a wall by two rivalling liquid phases L and V:

(a) equal wall action on the phases L and V, D/ ¼ /L � /V ¼ 0,

(b) more dense phase L completely wets the wall, D/ > 0, and

(c) less dense phase wets the wall, D/ < 0.
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applies, giving

lLðpL; TL1Þ ¼ lLðpL1; TL1Þ � gz; ð42Þ

with the distance z measured from the reference plane

corresponding to pL ¼ pL1. Introducing Eq. (41) in Eq.

(37) results in the Laplace barometric formula.

Note that via the vapour pressure the chemical po-

tential DlL can readily be connected with the equilib-

rium temperature.

6.2. Simultaneous actions of gravity and potential

For phases exposed to simultaneous actions of cur-

vature j, gravity g, and potential /, an extended capil-

larity equation can be deduced by writing Eq. (38) in the

form

pL ¼ pL1 þ DlL

vL
; ð43Þ

and combining with Eq. (39) to get

pV � pL ¼ 1

vV

�
� 1

vL

�
DlL: ð44Þ

Substituting Eq. (41) in Eq. (44) and considering Eq. (4),

one obtains

rjþ D/ ¼ ðqL � qVÞgz: ð45Þ

From this expression the height z of the liquid column in

a capillary, or the height of a climbing film, can be

calculated,

z ¼ rjþ D/
ðqL � qVÞg

: ð46Þ

With the exception of a relationship by Derjaguin [10],

equations of the type of Eq. (46) reported in the litera-

ture ignore either the wall or the vapour effect. This

equation reduces for D/ ¼ 0 to the familiar expression

for the height of a liquid column in a capillary tube. If

the outer surface of the capillary is considered, the in-

terface of the liquid film climbing up the tube is convex

and its curvature negative, hence

z ¼ D/� rj
ðqL � qVÞg

: ð47Þ

For the outer tube surface to become wetted, the wall

attraction must overcome the Laplace pressure,

D/� rj > 0. Consequently, the wetted portion of the

tube height is always larger inside than outside the tube.

However, neglecting the wall thickness of the tube along

with the film thickness, the difference Dz obtained from

Eqs. (46) and (47),

Dz ¼ 2rj
ðqL � qVÞg

; ð48Þ

measures the height of the internal film, formed above

the meniscus, relative to the external film.
For D/þ rj < 0, vapour phase creeps between the

liquid and wall thus forming a vapour film. Finally, for

a planar interface, j ¼ 0, the potential difference D/
governs alone the shape of the interface,

z ¼ D/
ðqL � qVÞg

¼ A=dn

ðqL � qVÞg
: ð49Þ

Omitting the vapour density in Eq. (49) gives an ex-

pression frequently used in the literature for calculation

of the height of climbing films.

For rjþ D/ > 0, the height z in Eq. (46) tends to

infinity at Dq ¼ qL � qV ! 0. Therefore, it depends on

D/ only, whether a wall surface will become wetted by

the fluid at its thermodynamic critical point (Dq ¼ 0,

r ¼ 0).

6.3. Immiscible liquid phases

An interesting picture is expected to establish with

two liquid phases in the miscibility gap. Namely, if the

densities of the phases are (nearly) equal and if

rjþ D/ 6¼ 0, the height z in Eq. (46) may become very

large. In this case, favourably one of the phases will wet

the container wall, thereby tending to enclose the other

phase, Fig. 3. At very small density differences of the

phases, it can become principally possible, that the phase

of larger density forms a film at the top of the less dense

phase, and vice versa, Fig. 3b and c. These phenomena

have been observed by Moldover and Chan [24] with

binary liquid mixtures and discussed by de Gennes [25]

in terms of long-range molecular forces.
7. Conclusion

An external action upon the phases of a system,

consisting at least of two phases, affects the phase

equilibrium. Its effect can readily be taken into account

by employing the familiar relationships of thermo-

dynamics. This leads to the corresponding extensions of

the common expressions. For instance, the isothermal
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change of the vapour pressure required to match an

external action upon the system can be included into the

classical Thomson (W. Thomson) equation. This equa-

tion was originally associated with the curvature of the

interface without any external effect. The analogous is

valid for the isobaric temperature rise according to the

Thomson (J.J. Thomson) expression.

Although most of the results given in the paper are

known from the literature, and several expressions can

be deduced from the famous thought experiment by

Thomson [11], illustrating the liquid rise in a capillary

tube, the straightforwardness of the model adopted for

the present derivations may serve to quickly survey the

interactions associated with phase changes in thin films.
Appendix A

The aim is to illustrate the potential and pressure

distributions in a fluid layer that is adhering to a wall

surface. The wall is assumed to attract the fluid by a

force obtainable from a potential field.

For a fluid at rest the Euler equation,

�gradp þ q~ff ¼ 0: ðA:1Þ

couples the pressure p and the density q with the force ~ff
per unit of mass.

Taking the force ~ff to arise from a potential field

~ff ¼ �grad/; ðA:2Þ

where / denotes the potential energy per unit mass, and

combining with Eq. (A.1) gives

gradp þ qgrad/ ¼ 0: ðA:3Þ

Involving the identity,

grad ðq/Þ ¼ qgrad/þ /gradq; ðA:4Þ

multiplying by d~rr, where ~rr is the radius vector, Fig. 4,

Eq. (A.3) becomes

dðp þ q/Þ ¼ /dq; ðA:5Þ
Fig. 4. Illustration supporting derivation of potential jump

across the interface.
or

p þ q/ ¼
Z

/dqþ C; ðA:6Þ

with C as a constant.

Further treatment of Eq. (A.6) requires q in depen-

dence of /. However, taking q as constant, gives the

basic equation of hydrostatics,

p þ q/ ¼ p0 þ q/0 ¼ C; ðA:7Þ

where the index 0 indicates the reference quantities. This

equation shows the sum of the pressure p and the energy

density q/ arising from the potential field to be constant

throughout the layer. We will return to this equation

further below, particularly to the constant C.
To obtain the potential /, Eq. (A.2) is multiplied

by d~rr and integrated,

/� /0 ¼ �
Z r

d0

~ff � d~rr: ðA:8Þ

The lower boundary is shown in Fig. 4 and its physical

meaning is stated below.

Assuming the force to consist of different contribu-

tions, say, ~gg and ~uu, we can write

~ff ¼~gg þ~uu ¼ g~eeg þ u~eeu; ðA:9Þ

where~eeg and~eeu are the unit vectors, g > 0 and u > 0 are

the magnitudes of the force components. With Eq. (A.9)

and d~rr ¼~rr0 dr, ~rr0 being the unit vector, Eq. (A.8)

becomes

/� /0 ¼ �
Z r

d0

ðg cosð~eeg;~rr0Þ þ u cosð~eeu;~rr0ÞÞdr: ðA:10Þ

This equation should be applied to a fluid layer adhering

to a horizontal wall, supposing

cosð~eeg;~rr0Þ ¼ cosð~eeu;~rr0Þ ¼ �1: ðA:11Þ

By this condition, the forces~gg and ~uu are perpendicularly

directed toward the wall, hence

/� /0 ¼
Z r

d0

ðg þ uÞdr; ðA:12Þ

and Eq. (A.7) becomes

p ¼ p0 � q
Z r

d0

ðg þ uÞdr: ðA:13Þ

Since ðg þ uÞ > 0 and dr > 0, the integral is always

positive, the pressure p thus decreases with increasing r.
If the forces ~gg and ~uu counteract, instead of (A.11)

we have

� cosð~eeg;~rr0Þ ¼ cosð~eeu;~rr0Þ ¼ �1; ðA:14Þ

giving

/� /0 ¼
Z r

d0

ðu� gÞdr; ðA:15Þ
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p ¼ p0 � q
Z r

d0

ðu� gÞdr; ðA:16Þ

instead of (A.12) and (A.13).

Taking the quantity g to represent the acceleration

due to gravity, Eqs. (A.12) and (A.13) describe the po-

tential and pressure distributions in a fluid layer sup-

ported by a horizontal wall, while Eqs. (A.15) and

(A.16) apply to a fluid layer adhering to the lower wall

surface. For simplicity, however, the quantity g is

omitted in the following.

To exemplify the effect of the force u on the potential

and pressure distributions, we assume this force to arise

from the interactions between wall and fluid according

to the ansatz

u ¼ n
rnþ1

B; B > 0; n > 0: ðA:17Þ

Then, Eq. (A.12) or (A.15) gives

/ ¼ /0 þ
1

dn0

�
� 1

rn

�
B; ðA:18Þ

while the pressure p follows from Eq. (A.13) or (A.16),

p ¼ p0 �
1

dn0

�
� 1

rn

�
qB: ðA:19Þ

As is evident from these equations, the potential de-

creases and the pressure increases when approaching the

wall surface; the fluid is thus pressed against the wall.

The quantity d0 used above as the lower integration

boundary can basically be specified arbitrarily, but it

seems reasonable to define by d0 the region adjacent to

the wall surface within which the fluid structure could be

changed thus violating the common continuity hypoth-

esis. The equations derived above are, therefore, valid

for r > d0 only.

In order to apply the results obtained so far to the

vapour phase, the different phases will be discriminated

by attaching indices to the phase-specific quantities. The

index L is used for the liquid phase. Eqs. (A.18) and

(A.19) thus read

/L ¼ /L0 þ
1

dn0

�
� 1

rn

�
BL; ðA:20Þ

pL ¼ pL0 �
1

dn0

�
� 1

rn

�
qLBL: ðA:21Þ

Taking the ansatz (A.17) to also hold true for the vapour

phase, we have

/V ¼ /VI þ
1

dn

�
� 1

rn

�
BV; ðA:22Þ

pV ¼ pVI �
1

dn

�
� 1

rn

�
qVBV; r > d; ðA:23Þ

where the index VI refers to the vapour at the interface.
Eqs. (A.20) and (A.22) are suitable to examine whe-

ther or not the wall effect leads to a potential jump

across the interface. To achieve this, we set in Eq. (A.20)

r ¼ d, denote the corresponding potential by /LI,

/LI ¼ /L0 þ
1

dn0

�
� 1

dn

�
BL; ðA:24Þ

and combine with (A.22), thus

/LI � /VI ¼ /L0 � /V þ 1

dn0

�
� 1

dn

�
BL þ 1

dn

�
� 1

rn

�
BV:

ðA:25Þ

Denoting by /V1 the potential of the vapour at infinity

(both d and r), Eq. (A.25) simplifies

/LI � /VI ¼ /L0 � /V1 þ BL

dn0
: ðA:26Þ

Since for r, d ! 1 the wall effect on the interface may

be neglected ð/LI � /VI ¼ 0Þ, Eq. (A.26) gives

/L0 � /V1 þ BL

dn0
¼ 0: ðA:27Þ

The quantities in this equation are independent of d, its
validity is therefore taken to be independent of the film

thickness. Eqs. (A.25) and (A.27) then give

D/I ¼ /LI � /VI ¼
BV � BL

dn
� BV

rn
ðA:28Þ

with the limits

D/I ¼ /LI � /VI ¼
BV � BL

dn
; r ! 1; ðA:29Þ

D/I ¼ /LI � /VI ¼ �BL

dn
; r ¼ d: ðA:30Þ

Analogous reasoning leads to the following relationships

for the interfacial liquid pressure pLI, the reference

pressure pL0, and the interfacial pressure jump DpI,

pLI ¼ pL0 �
1

dn0

�
� 1

dn

�
qLBL; ðA:31Þ

pL0 ¼ pV1 þ qLBL

dn0
; ðA:32Þ

DpI ¼ pLI � pVI ¼
qLBL � qVBV

dn
þ qVBV

rn
: ðA:33Þ

The latter equation delivers

DpI ¼ pLI � pVI ¼
qLBL � qVBV

dn
; r ! 1; ðA:34Þ

DpI ¼ pLI � pVI ¼
qLBL

dn
; r ¼ d: ðA:35Þ

Since DuI and DpI are local quantities, only Eqs. (A.30)

and (A.35) possess physical significances concerning

these jumps.
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Prior to closing the considerations, let us return to

Eq. (A.6). Being valid for the whole phase, it must also

hold true for the phase boundary, the interface, hence

p
�

þ q/�
Z

/dq

�
LI

¼ CLI; ðA:36Þ

p
�

þ q/�
Z

/dq

�
VI

¼ CVI; ðA:37Þ

or

p
�

þ q/�
Z

/dq

�
VI

� p
�

þ q/�
Z

/dq

�
LI

¼ CVI � CLI: ðA:38Þ

Excluding other external actions on the phases and

viewing the terms as energy densities, the energy jump

across the interface can only arise from the shape of the

interface. Taking the mass densities as constant and the

interface as curved in a way that increases the energy in

the vapour, we can write

ðp þ q/ÞVI � ðp þ q/ÞLI ¼ rj; ðA:39Þ

where r and j are the free energy and the curvature of

the interface, respectively. Replacing formally the

product q/ by / (energy per unit volume, e.g. in J/m3)

and omitting the index I, Eq. (39) becomes identical to

Eq. (4) in this paper.
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